Human-Machine Collaboration with the HEAP Walking Excavator using AR

Cafer Mertcan Akcay, Irem Kaftan, Adrian Taubner, Christopher Tibaldo
ETH Zurich
Ramistrasse 101, 8092 Zurich, Switzerland
{cakcay, ikaftan, ataubner, tibaldoc}@student.ethz.ch

Abstract

With the increasing demand and potential for automa-
tion in the construction industry over the last years, the
Robotics System Lab (RSL) has developed an autonomous
walking excavator (HEAP) as one way to fulfill this poten-
tial. The excavator needs to get instructions from a planner
in order to operate in a seamless manner. Accordingly, this
project aims to develop an augmented reality (AR) appli-
cation which overlays the geolocated dataset of Irchel Park
with its real world location and visualizes terrain changes
using Microsoft HoloLens. In our project, we display the
terrain by using the point cloud data obtained by a drone
and pass it through Unity shaders to efficiently render the
data. We then align the terrain data with the physical world
by using QR codes and World Locking Tools. Furthermore,
we implemented an editing option to modify the terrain at
uniform angles and a hand menu for the user to choose be-
tween different editing modes, as well as to switch between
the original and the modified terrain. In the end, we were
able to satisfy the requirements of the project by integrat-
ing these features successfully. We see this project as a
possible starting point for future work, such as by integrat-
ing it with the autonomous walking excavator and by trying
it in different construction scenarios. The demo video can
be found at Point Cloud Terrain Editor with HoloLens and
the code is publicly available at Point Cloud Terrain Editor
with HoloLens.

1. Motivation

While the Robotics System Lab (RSL) has been making
progress in the development of the hardware and algorithms
powering the autonomous walking excavator (HEAP), on
the planners’ side, progress needs to be made in the prepa-
ration and visualization of instructions for the machine.

For successful human-machine collaboration, planners
and operators of the autonomous walking excavator need
passive on-site control of the machine without having to
sit in the cockpit. On the one hand, it should be possible

to check planned terrain changes on site, and on the other
hand, it should be possible to visualize the possible paths
and any no-go zones. In many cases, this data, such as path
finding, is calculated by the machine itself and, thus, it has
no clear external graphical interface with which the plan-
ner can check the calculation for accuracy. Hence, there is
a need for planning and visualizing changes on the terrain
data before sending the instructions to the machine.

For this purpose, we implemented an AR application that
can align a large georeferenced 3D dataset of a construction
site with its corresponding location. The application allows
the planner to move through the point cloud terrain and edit
the terrain data to visualize changes on site. Particularly, we
selected Irchel Park as our terrain and used its colored point
cloud data obtained by a drone. We aligned the terrain data
with the physical world using QR codes and World Locking
Tools. We then implemented an option to modify the terrain
and visualize the changes.

This AR application serves as an initial attempt to plan
and visualize terrain changes on the construction site while
being there physically. It can be used for different construc-
tion sites by the addition of new datasets. It might, in the
future, also be integrated with the autonomous walking ex-
cavator in order to prepare instructions for it.

2. Prior Work

Human-machine collaboration (HMC) has become an
essential part of manufacturing industry over the last years.
Autonomous robots have been increasingly used in facto-
ries since they increase productivity and boost efficiency by
automating monotonous tasks and supporting human oper-
ators in risky tasks [1]. In addition, various research groups
have started to develop AR technologies to provide collab-
oration between humans and robots. For example, Hernan-
dez et al. developed an AR interface in order to communi-
cate high-level requests to the robot and to preview, modify,
or approve the actions of the robot [5]. In their approach,
a human operator manipulates virtual objects through the
AR interface and determines what he/she wants from the
robot [5]. As the virtual objects match with their real-life


https://www.youtube.com/watch?v=Si3i_RwV6mo
https://github.com/Yoekkul/PointCloud-Terrain-Editor-for-Hololens
https://github.com/Yoekkul/PointCloud-Terrain-Editor-for-Hololens

counterparts, the robot understands the task and leverages
its decision-making capabilities in order to achieve the de-
sired goal. Another example comes from PTC’s Reality Lab
where they developed an AR interface to control robotic
movements [3]. Particularly, a human operator uses kinetic
AR to send a mobile robot from one station to another [3].
Their mobile robot uses kinetic AR and spatial mapping to
plan its motion between these stations [3].

There are also many applications of AR technologies for
assembly guidance which aim at enhancing the collabora-
tion between operators and robots at industrial workplaces
and decreasing the completion time of assembly tasks [9].
In these applications, the operator sees virtual objects that
are superimposed on the real world scenes in the form of
computer graphics and the robot helps the operator by load-
ing the virtual objects [2], [8]. The task plan of the robot
is provided to the operator in the form of graphical instruc-
tions using AR during the assembly task so that he/she has
additional information for deciding his/her next assembly
step [2], [8]. It is found that the completion times decrease
and the assembling accuracies increase significantly using
AR-assisted systems [9], [2], [8], [4].

Although AR technologies are commonly used in differ-
ent industries, there are not many applications in the con-
struction industry. The reasons include the compartmental-
ization in the construction industry and the lack of interop-
erability of software for different tasks [6]. Kjyanek et al.
proposed an interactive timber prefabrication workflow in
which the production and assembly tasks alternate between
a construction worker and a robotic system [6]. The worker
communicates with the robotic system through an AR inter-
face which allows them to influence production sequencing
and plan robotic trajectories [6]. Another example comes
from Mitterberger et al. who developed a craft-specific AR
system for in situ construction in order to show that an aug-
mented manual process can match the complexity and pre-
cision seen in robotic fabrication [7]. This system is based
on a real-time object-based visual-inertial tracking frame-
work to achieve increased context-awareness and dynamic
optical guidance for bricklayers [7]. It also allows brick-
layers to have enhanced spatial freedom by capitalizing on
their craft of mortar handling [7].

The AR applications in the construction industry mainly
focus on the fabrication of materials with a few examples
in automated bricklaying. Therefore, our project serves as
a novel approach to plan and visualize terrain changes on a
construction site.

3. Methodology

There were three main tasks in our project: The first con-
sisted of loading the point cloud data into Unity and display-
ing it using shaders. The second required us to align the
point cloud data with the physical world using QR codes

and World Locking Tools. Lastly, we implemented terrain
editing options along with a hand menu for user interaction.
The system diagram of our project is shown in Fig. 1.

10}
5 Q
MRTK World
Locking Tools
HoloLens

pad Poioen

ScriptedImporter(l, 'xyzrgh'
[ScriptedImporter(l, 'xyzrgh")] Uity Point

Cloud Shader

Hand Menu
with Editing
Options

MRTK
Input Handler

Figure 1. The system diagram of our project.

3.1. Visualizing the Terrain

We had two options to display large terrains on the
HoloLens: either displaying the raw point cloud data ob-
tained by scanning the environment or using a large mesh
which can be obtained by processing the captured data.
We decided to use the former approach since it results in
a better viewing experience on the limited viewport of the
HoloLens. As the autonomous walking excavator can pro-
cess both point cloud and mesh data, working with point
cloud data does not cause a problem in our case.

We first worked with a coarse point cloud dataset which
was acquired by the canton of Zurich with an airplane and a
mounted LIDAR system on it. We then started working with
a dense point cloud dataset which was acquired with a DJI
Mavic Air and then processed in Agisoft Metashape using
photogrammetry. The latter dataset of Irchel Park contained
2.3 million points with color. The data is visualized in Unity
and shown in Fig. 2.

Figure 2. The dense colored point cloud data of Irchel Park.

As the data was hard to handle due to its size, we decided
to subsample it and only use 23.000 points. Subsampling
the data did not cause any problems in aligning the terrain



with the corresponding physical world location. The origi-
nal and subsampled point cloud data are shown in Fig. 3.

(a) The original point cloud.

(b) The subsampled point cloud.

Figure 3. The original and subsampled point cloud of Irchel Park.

3.1.1 Loading Point Cloud Data in Unity

We decided to use Unity’s [ScriptedImporter (1,
"xyzrgb") ] feature to streamline the process of load-
ing point cloud data in Unity. In this way, any file with
a .xyzrgb ending is recognized and constructed into a
Unity Prefab object which can then easily be added to
the scene. When the asset gets imported, our custom
OnImportAsset () function defines the components to
be added to the new GameObject. In our case, it is a C#
script which loads the desired shader.

3.1.2 Using Shaders to Display Point Clouds

We decided to use Unity shaders to visualize the large
amount of points in the scene. This allows us to send
an array containing the coordinates and position of each
point to the GPU and, thus, to offload work from the
limited power of the CPU of HoloLens. The data
transfer can be performed in Unity with the use of a
ComputeBuf fer. After passing the buffer to the GPU us-
ing Unity’s Graphics.DrawProcedural () call, the
shader takes over. We made use of a Vertex shader to place
the point at the desired position and give it a radius while
the Fragment shader took care of the color.

3.2. Aligning the Terrain with the Physical World

We decided to use World Locking Tools (WLT) provided
by MRTK in order to align the point cloud data of Irchel

Park with the corresponding real world location. When we
start the application, we scan QR codes placed in the phys-
ical world whose precise locations in the scene are known.
These serve as anchor points which WLT uses to perform
terrain alignment. The reason for using multiple QR codes
is to make the alignment more robust to rotation as well as
to correct errors which accumulate due to inherent inaccu-
racies of the HoloLens tracking system. When the QR code
is scanned successfully, a green box is displayed on it as
shown in Fig. 4. The QR code placement in the real word is
matched with the QR code placement in the scene. There-
fore, the entire holograph space of our AR application is
locked to the physical world.

N

Figure 4. Successful QR code scanning.

3.3. Editing the Terrain

The terrain editing feature allows common operations
that excavators can perform: digging the ground or creating
a hill. These operations should be intuitive and not cumber-
some for the user of the AR application. Therefore, we de-
signed the interaction part such that when the user pinches
the point cloud with their hand, the terrain within a spec-
ified radius is selected. If the user then moves their hand
upwards, the terrain is lifted. Similarly, if the user moves
their hand downwards, the terrain is dug.

The geometry of editing can be determined by the user.
We implemented three options for the shape of the edit: cre-
ating a flat hill and a hole, a Gaussian-shaped hill and a hole,
or a V-shaped hill and a hole, which are shown in Fig. 5.
The user is able to select the radius of edit by a slider on
the hand menu so that only the points within that radius are
modified. There is also an option to select the o of Gaussian
by a slider on the hand menu to determine the width of the
hill or the hole.

Based on the feedback of our supervisor, we modified
the angle-editing option, such that the angle of repose of the
hill or the hole can be determined with a slider. The user can
select the angle and the radius of edit by two sliders on the
hand menu. The neighbouring points of the pinched point
are repositioned according to the angle and the radius of edit
as shown in Fig. 6.



(e) Gaussian hill.

(f) Gaussian hole.

Figure 5. The different terrain editing options displayed in Unity.

(d) Hole at 60°.

Figure 6. The edited terrain at different angles displayed in Unity.

To make a user-friendly application and enable user in-
teraction, the settings can be selected by a hand menu which
is shown in Fig. 7. The angle of repose is determined by
using the angle slider on the menu. It can be between 0°
and 90° depending on the particular application. The radius
of edit is also determined by using the radius slider on the
menu. Furthermore, the user can cancel the modifications
or confirm them after visualization. It is also possible to
switch between the original and modified terrain in order to
compare the changes.

We used InputHandler of MRTK in order to han-
dle input events resulting from user interaction. When the
user fires an input event, such as pinching the point cloud,
the input system recognizes it and determines which points
in the point cloud are in the selected area. It then instan-

Figure 7. The hand menu.

tiates placeHolder GameObjects which aim to show the
area which is currently being edited. These newly created
GameObijects have white color during the editing process.
When the user confirms the changes by pressing the con-
firm button on the hand menu, their positions get saved and
they get the color of the terrain from where they are origi-
nated.

4. Evaluation

The process of creating a hill is shown in Fig. 8 in which
the hill is created in the editing mode (the point clouds are
white) and then the changes are confirmed (the point clouds
take the color of the grass).

(b) The created hill after the changes are confirmed.

Figure 8. The creation of a hill using HoloLens.

Overall, we were able to satisfy the requirements of our
project which were aligning the terrain data with its physical
world location and editing the terrain by using the angle of
repose. The process of aligning the terrain with its physical



world location depends on the placement of the QR codes so
the alignment may be faulty if the QR codes are not placed
correctly.

We also realized that the application is very sensitive to
illumination changes so its performance differs based on the
amount of sunlight. If there is a lot of sunlight, it becomes
harder to see the points. On the other hand, if there is not
enough sunlight, it becomes harder for the user to scan the
QR codes and for HoloLens to identify gestures. Moreover,
the initially used sliders were not perceiving hand inputs all
the time, so we changed them to a newer version for the
final submission. Although this change did not solve the
problem completely, it improved the user interaction quality
significantly.

5. Discussion

The presented work here is intended as a starting point
for future projects. For instance, the AR application can be
integrated with the HEAP autonomous walking excavator
in order to direct and be aware of the actions of the machine
more accurately by defining new excavation sites on oper-
ation and being warned of its intended trajectories. It can
also be used to plan and visualize terrain changes on site so
it can help planners and operators save time and effort.

There are possible improvements to be made on the dis-
played terrain. On shader level, one can include functions,
such as frustum culling, or level of detail functions which
decimate points that are far away. One can also use mixed
point cloud-mesh data depending on the distance to the user
in order to better visualize the terrain. Particularly, the re-
gions that are close to the user can be displayed using mesh
data and the regions that are far away from the user can be
displayed using point cloud data. Moreover, one can display
half-transparent mesh in addition to control points and use
mesh decimation based on distance in order to show closer
points with higher resolution.

There are also possible next steps to be implemented. In
addition to cancelling or confirming changes, one can add
an undo or redo option so that the user can switch between
the changes quickly. One can also have an export file in two
ways: either a . txt file with the point cloud data which
is less elegant but more robust to process or a list of trans-
formations with the anchor points and slope angles at those
points which is lighter and easier to process. Moreover, one
can implement a hand shader to mask the points behind the
hand in order to get a better depth perception.

References

[1] Augmented reality could transform human-robot collabora-
tion. [Online] Available at https://innovate. ieee.
org / innovation - spotlight / human - robot -
collaboration/, 2020. 1

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Siam Charoenseang and Tarinee Tonggoed. Human-robot col-
laboration with augmented reality. In Constantine Stephani-
dis, editor, HCI International 2011, pages 93-97, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg. 2

Anna Fuste, Benjamin Reynolds, James Hobin, Andrea Braga,
and Valentin Heun. Kinetic ar: Robotic motion planning and
programming using augmented reality interfaces. New York,
NY, USA, 2020. Association for Computing Machinery. 2
Christos Gkournelos, Panagiotis Karagiannis, Niki Kousi,
George Michalos, Spyridon Koukas, and Sotiris Makris. Ap-
plication of wearable devices for supporting operators in
human-robot cooperative assembly tasks. Procedia CIRP,
76:177-182, 2018. 7th CIRP Conference on Assembly Tech-
nologies and Systems (CATS 2018). 2

Juan David Herndndez, Shlok Sobti, Anthony Sciola, Mark
Moll, and Lydia E. Kavraki. Increasing robot autonomy via
motion planning and an augmented reality interface. [EEE
Robotics and Automation Letters, 5(2):1017-1023, 2020. 1
Ondrej Kyjanek, Bahar Al Bahar, Lauren Vasey, Benedikt
Wannemacher, and Achim Menges. Implementation of an
augmented reality ar workflow for human robot collaboration
in timber prefabrication. 06 2019. 2

Daniela Mitterberger, Kathrin Dorfler, Timothy Sandy, Foteini
Salveridou, Marco Hutter, Fabio Gramazio, and Matthias
Kohler. Augmented bricklaying: Human—machine interaction
for in situ assembly of complex brickwork using object-aware
augmented reality. Construction Robotics, 4, 12 2020. 2

N. Pathomaree and S. Charoenseang. Augmented reality for
skill transfer in assembly task. In IEEE International Work-
shop on Robot and Human Interactive Communication, pages
500-504, 2005. 2

Miaolong Yuan, S K Ong, and Andrew Nee. Augmented real-
ity for assembly guidance using a virtual interactive tool. In-
ternational Journal of Production Research, 46:1745-1767,
04 2008. 2


https://innovate.ieee.org/innovation-spotlight/human-robot-collaboration/
https://innovate.ieee.org/innovation-spotlight/human-robot-collaboration/
https://innovate.ieee.org/innovation-spotlight/human-robot-collaboration/

	. Motivation
	. Prior Work
	. Methodology
	. Visualizing the Terrain
	Loading Point Cloud Data in Unity
	Using Shaders to Display Point Clouds

	. Aligning the Terrain with the Physical World
	. Editing the Terrain

	. Evaluation
	. Discussion

